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Abstract—This paper introduces an automatic liver 
parenchyma segmentation algorithm that can delineate liver 
in abdominal CT images. The proposed approach consists of 
three main steps. Firstly, a texture analysis is applied onto 
input abdominal CT images to extract pixel level features. 
Here, two main categories of features, namely Wavelet 
coefficients and Haralick texture descriptors are 
investigated. Secondly, support vector machines (SVM) are 
implemented to classify the data into pixel-wised liver or 
non-liver. Finally, specially combined morphological 
operations are designed as a post processor to remove noise 
and to delineate the liver. Our unique contributions to liver 
segmentation are twofold: one is that it has been proved 
through experiments that wavelet features present better 
classification than Haralick texture descriptors when SVMs 
are used; the other is that the combination of morphological 
operations with a pixel-wised SVM classifier can delineate 
volumetric liver accurately. The algorithm can be used in an 
advanced computer-aided liver disease diagnosis and 
surgical planning systems. Examples of applying the 
algorithm on real CT data are presented with performance 
validation based on the automatically segmented results and 
that of manually segmented ones. 

Keywords- segmentation, machine learning, texture 
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I.  INTRODUCTION 
An accurate and automatic approach of liver 

parenchyma segmentation is crucial to a computer-aided 
liver disease diagnosis and liver surgical planning system 
such as a system for liver transplantation. However the 
liver delineation in computer tomography (CT) images is 
very difficult because of two main reasons. One is that the 
gray level intensities of liver parenchyma are overlapped 
with those of the surrounding tissues and organs such as 
the heart and kidney. The other is that the liver is non-rigid 
in shape and variant in position. The boundary between the 
liver and its neighbouring structures is sometimes barely 
noticeable in CT images [1,2]. Various algorithms have 
been proposed to deal with the liver segmentation [3-8]. 
However, great challenges remain in liver segmentation on 
the aspects of accuracy, robustness, and automation.  

In this paper, we present an automatic liver 
parenchyma segmentation algorithm that can delineate 
liver in abdominal CT images. In section 2, we describe 
the algorithm in detail, including its flow diagram and its 
three major steps. In section 3, we describe the procedure 
and results of the experiments of applying the proposed 
algorithm on real CT data as well as the related 
performance discussion. Finally in section 4, we conclude 
by summarising the approach and pointing out possible 
future pursuits in liver segmentation. 

II. THE ALGORITHM 
In our efforts of developing an automatic segmentation 

of CT images of the liver, we have focused our attention 
mainly on three aspects. One is that there are no defined 

intensity or geometry descriptions to delineate liver in CT 
images. Therefore, a simple approach such as an intensity 
threshold will not apply. Another is that both texture 
features and distribution or resolution features are 
important in isolating the liver from other surrounding 
areas. With this consideration, both Wavelet coefficients 
and Haralick texture descriptors are investigated in feature 
selection. The last aspect is that the combination of a pixel-
wised classifier with a shape-wised refiner will deliver a 
robust yet accurate segmentation of the liver. This leads to 
our approach of combining SVM classifier with 
morphological operators. This section details our concepts 
and implementations in these regards. 

A. Algorithm Overview 
The proposed approach of liver segmentation contains 

three major steps: texture feature extraction, support vector 
machine classification, and combined morphological 
operations. 

The automatic segmentation process starts with 
extracting texture features from input CT slices. We 
propose to use Wavelet coefficients as texture features. In 
order to compare our approach’s performance with that of 
other approaches, Haralick texture descriptors are also 
derived to be investigated in the following classification 
stage. Support vector machines are used to classify each 
pixel into either liver (with value of 1 assigned) or non-
liver (with value of 0 assigned). Here the parameters of the 
SVM have been derived in a pre-training process, of which 
the details will be given in the following description. Since 
the SVM is a pixel-wised classifier, i.e., it classifies the CT 
slices pixel by pixel, and the classification will not be 
perfect on test data, there will be both false negative error 
(FNE) inside the liver parenchyma and false positive error 
(FPE) outside the liver parenchyma. Therefore, a set of 
specifically designed morphological operations is used to 
refine the result of SVM classification to get the 
delineation of the liver. The following three sections detail 
these steps. 

B. Texture Feature Extraction 
Texture extraction is the process of quantifying the 

texture patterns within a specified neighbourhood of size N 
by N pixels around a pixel of interest. There mainly exist 
four categories of texture analysis, namely, structural, 
statistical, model-based, and transform-based approaches 
[9]. In our study, two sets of texture features, i.e., Wavelet 
coefficients and Haralick texture descriptors, are used 
separately to compare their performances in segmenting 
the liver. This section describes the definitions and 
calculations of these features. 

1) Haralick texture descriptors 
Haralick texture descriptors [10] are used in statistical 

texture analysis. The approach represents texture indirectly 
by the non-deterministic properties that govern the 
distribution and relationship between the intensities of an 
image. The approach is based on second-order statistics 
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that is the statistics of pairs of pixels. Such statistics is 
represented with a second-order histogram that is defined 
as the co-occurrence matrix Pij(d, θ).  

The general idea of a co-occurrence matrix is to 
represent an image's texture by counting pixel intensity 
pairs, using a matrix that keeps track of all the pixel-pair 
counts [11]. Pij(d,θ), counts all the pixel-pairs within the N 
by N neighbourhood. Here d=1,…,N-1 is the displacement 
vector, θ=0°, 45°, 90°, 135° is the angle, i represents the 
gray-level along the vertical direction and j represents the 
gray-level along the horizontal direction. 

Once the co-occurrence matrix is calculated for each 
pixel in the image, nine Haralick texture descriptors can be 
defined and calculated accordingly as below. 
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predominant pixel pair in an image: 
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Cluster Tendency: measures the grouping of pixels that 
have similar gray-level values:∑∑ −+−

N

i

N

j
ijcr Pji 2)( μμ ) 

where rμ ,  cμ , 2
rσ , and 2

cσ  are the means and 
variance of row and column in Pij(d,θ) matrix. 

 
2) Wavelet coefficients 

To deal with both the texture characteristics and spatial 
structures of the liver and its surrounding tissues, Wavelet 
transform [12] is used to derive inputs to the SVM 
classifier. Comparing to other transforms such as Fourier 
[13] and Gabor [14], Wavelet transform has two 
advantages in segmentation application. One is that it can 
represent textures at the most suitable scale by varying the 
spatial resolution. The other is that wavelets best suite for 
texture analysis in a specific application can be chosen 
because of a wide range of choices for the wavelet 
function. 

The wavelet transform replaces the Fourier transform's 
sinusoidal waves by a family generated by translations and 
dilations of a window called a wavelet. The wavelet 
transform is defined by 
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where the base atom ψ  is a zero average function, 
centered around zero with a finite energy. The family of 
vectors is obtained by translations and dilatations of the 
base atom:  
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In image processing applications, the wavelet 
transform is usually computed with dyadic wavelet 
transform which is implemented by filter banks. The 
filtering is done along both rows and columns with pairs of 
lowpass filter and highpass filter [12]. A one-scale image 
wavelet decomposition results four blocks of components: 
(a) the downsampling of the lowpass filtering along both 
rows and columns; (b) the downsampling of the lowpass 
filtering along rows and highpass filtering along columns; 
(c) the downsampling of the highpass filtering along rows 
and lowpass filtering along columns; and (d) the 
downsampling of the highpass filtering along both rows 
and columns. Such filtering or decomposition can be done 
further on (a), resulting a higher scale representation of the 
original image. 

C. Support Vector Machine Classification 
Support vector machines (SVMs) [15] are a set of 

related supervised learning methods used for classification 
and regression. Viewing input data as two sets of vectors 
in an n-dimensional space, an SVM will construct a 
separating hyperplane in that space, one which maximizes 
the margin between the two data sets. 

Assume the training set is {(xi,yi}, i =1,2,…l}, where xi 
is the input with xi∈Rn, yi is the output with yi∈R, here 
R={-1,+1}, and l is the number of input samples. Then an 
optimal hyperplane in canonical form must satisfy the 
following constraints: 

0)( =+ bxωφ               (EQ 3) 
Where b∈R, ω  is a normal vector, and )(xφ  is an 

inner product induced feature map that maps the input 
space into a high dimension linear space.  

SVMs convert the task of finding the optimal 
hyperplane into a task of quadratic programming problem 
as: 
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Where 0≥iξ  is slack variable, 0>C  is penalty. 
Applying Lagrange multipliers, the optimal quadratic 

programming problem with the above linear conditions can 
be solved as the following dual optimal problem: 
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Where iα  is support value, the xi corresponding to 
Ci ≤≤ α0  is called support vector (SV), and the xi 

corresponding to Ci << α0  is called normal support 
vector (noted as NSV). 
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Where NNSV is the number of NSV, ),( ji xxK is kernel 
function. 

The training process will derive iα , b, and ),( ji xxK . 
Then the SVM as a classifier can classify any input data x 
with the following classify function:  
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D. Combined Morphological Operations 
A SVM is a pixel-wised classifier. This results two 

issues that need to be resolved in liver parenchyma 
segmentation. One is that the classification is not perfect, 
resulting misclassified pixels both within the liver and 
outside the liver. The other is that the shape and spatial 
information is not considered, making the classification 
sensitive to the noise produced by the misclassified pixels. 
Therefore, a set of specifically designed binary 
morphological operations is used to refine the result of 
SVM classification to get the delineation of the liver. 

The combined morphological operation starts with 
“dilate” and “erode” on the output of pixel-based SVM 
classifier. Fig. 1(a) presents an original slice of abdominal 
greyscale CT image. In the image, liver is at the top-left 
corner, indicated with the white curve. Fig. 1(b) shows the 
output of SVM on the image. From the figure, it can be 
seen that the SVM can classify most of the liver pixels 
correctly but with some errors outside liver as well. By 
applying “dilate” and then “erode”, the dotted pattern 
inside the liver is converted into connected region as 
shown in Fig. 1(c). Morphologic operations are described 
by the shape and size of the structural element used. When 
a “dilate” or “erode” operator is used, the size of the 
structural element has to be chosen carefully: if the 
structural element is too small, multiple regions will form 
inside the liver; if the structural element is too large, other 
organs and tissues will be wrongly combined into liver. 
We used a square structural element with a diameter of 6 
pixels for the operation. This value was determined 
according to both the anatomical structural knowledge of 
the abdomen and the CT image resolutions.   

The second step of the combined morphological 
operation is to get rid of non-liver areas but keep the liver. 
This can be easily done by retaining the largest object 
inside the abdominal volume composed of multiple scans.  
Fig. 1 (d) shows the outcome. 

Up to this point, it can be seen from Fig. 1(d) that there 
are still some black holes inside the liver. These are the 
pixels which are liver yet are misclassified as non-liver. To 
rectify on these positions, “hole filling” operation is 
applied. Its result is shown in Fig. 1(e). 

The last step is to delete the spurs and smooth the 
contour along edges. Here the “erode” operator is applied 
first, then the “dilate” operator. Fig. 1(f) shows the final 
segmented liver area, where the white curve is the liver 
contour that was manually segmented by radiologist. 

 
III. EXPERIMENTS AND DISCUSSIONS 

The proposed automatic liver parenchyma 
segmentation algorithm was applied to human abdominal 
CT images obtained from http://www.sliver07.org/ [16]. 
All the images were enhanced with contrast agent and 
scanned in the central venous phase. In designing the 
support vector machine classifier, an open source software 
LIBSVM [17] was used as a platform.  

Three slices from one data set (Data2) were used as 
training data. Testing was done on the data set and another 
data set (Data3). Performance validation was done by 
comparing the automatically segmented results with the 
results manually segmented by an experience radiologist.  
Three metrics are resigned to evaluate the algorithm’s 
performance, of which, the first two are used to evaluate 
the performance of SVM classifier, and the third is used to 
evaluate the performance of the proposed automatic liver 
parenchyma segmentation algorithm as a whole. 

False positive volume fraction (FPVF): is defined as 
the amount of the pixels that are falsely classified by SVM 
as the liver, as a fraction of the total amount of pixels that 

Fig. 1 Refining the output of SVM classification with 
combined morphological operations 

(a) an original slice of abdominal greyscale CT image; (b) 
output of SVM on the image; (c) output of “dilate” and 
“erode”; (d) output of getting rid of non-liver areas; (e) output 
of “hole filling” operation; (f) output of “smoothing” 
operation    Note: the white curve in (a) and (f) is the liver 
boundary manually segmented by radiologist 

a b 

c d 

e f 
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are manually identified as the liver by radiologist. It can be 
expressed as:

man

manSVM

L
LLFPVF −= . Where Lman denotes the 

total amount of pixels that are manually identified as liver 
by radiologist, i.e., the number of 1’s in the classification 
benchmark. LSVM denotes the total amount of the pixels 
that are classified by SVM as the liver. 

manSVM LL −  is 
the set difference between LSVM and Lman. 

False negative volume fraction (FNVF): is defined as 
the amount of the pixels that are falsely classified by SVM 
as the liver, as a fraction of the total amount of pixels that 
are manually identified as the liver by radiologist. It can be 
expressed as:

man

SVMman

L
LLFNVF −= . Where 

SVMman LL −  is 

the set difference between Lman and LSVM. 
True positive volume fraction (TPVF): is defined as the 

amount of the pixels that are classified as liver by both the 
proposed automatic liver parenchyma segmentation 
algorithm and radiologist, as a fraction of the total amount 
of pixels that are manually identified as the liver by 
radiologist. It can be expressed as:

man

manproposed

L
LLFPVF ∩= . 

Where Lproposed denotes the total amount of the pixels that 
are classified by the proposed automatic liver parenchyma 
segmentation algorithm as the liver. 

Segmentation performance evaluation was done on 
different data sets and texture features. Table 1 shows the 
performance metrics of the liver segmentation algorithm. 

Table 1 Performance metrics (%) of the proposed liver 
segmentation algorithm 

 Haralick feature based Wavelet based 
FPVF FNVF TPVF FPVF FNVF TPVF 

Data2 14.3 6.1 94.6 11.5 5.3 96.3 
Data3 18.9 8.0 92.4 15.5 7.8 94.1 

Note that Data2 contains three training images, Data3 
contains the images of another subject. From the table we 
can observe that: SVM classifier alone is not enough to 
delineate the liver parenchyma. Misclassification happened 
at both inside the liver (which is measured by FNVF) and 
outside the liver (which is measured by FPVF). Comparing 
to Wavelet based approach, Haralick feature based 
approach resulted in more false positives. On true positive 
volume fraction, the approach presented about two percent 
better performance on partly trained data set (i.e., Data2) 
than non-trained data set. As a whole, Wavelet based 
approach performed better than Haralick feature based 
approach. The proposed approach achieved as high as 
94.1% true positive volume fraction on non-trained data 
set, and 96.3% on partly trained data set. 

IV. CONCLUSION 
With the review of the recent liver segmentation 

techniques, we have introduced an automatic liver 
parenchyma segmentation algorithm to delineate liver in 
abdominal CT images. It is based on efficient texture 
feature analysis, support vector machines, and combined 
morphological operations. The approach has two unique 
contributions to liver segmentation: one is that it has been 
proved through experiments that wavelet features present 
better classification than Haralick texture descriptors when 
SVM is used; the other is that the combination of 
morphological operations with pixel-wised SVM classifier 

can delineate volumetric liver accurately. Experiment 
results on liver segmentation on real CT images have 
demonstrated the effectiveness of the algorithm. The 
algorithm can be used in an advanced computer-aided liver 
disease diagnosis and liver surgical planning system. 
Future work and further improvements needed for the 
method include: theoretical and implemental study on the 
support vector machine classifier to make the pixel based 
classifier more robust on test data; calculation speed 
improvement to SVM on both training and testing; and 
testing on more data. 
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